Five reasons the U.S. tech lead is in danger

While Congress focuses on budget cutting, other nations are figuring out what to spend on the next computing platforms

1 2 3 Page 2
Page 2 of 3

The Large Hadron Collider (LHC), a 16.8 mile circular tunnel on the French and Swiss borders, is establishing Europe as the world's center for high energy physics research. This may mean that physicists who once wanted to work in the U.S. may find Europe more advantageous. That may help seed the creation of new industries in Europe.

The U.S. once had plans to build a 54-mile supercollider tunnel in Texas, but Congress pulled the funding and abandoned the partially constructed project after its projected cost increased from about $5 billion in the late 1980s to $11 billion in 1993.

European nations are also acting jointly in building their own GPS system, Galileo. It's a $20 billion project.

LHC and Galileo illustrate that European nations are willing to pool resources and work together on technology. They see a similar opportunity in exascale, especially in software development.

"The U.S., Europe, China and Japan all have the potential to realize the first exascale system," concluded the European Exascale Software Initiative, the group that's leading Europe's effort, in a report last month.

3: The path to exascale is uncharted, which opens the door to challengers.

Although the U.S. has not produced a plan for exascale development, it has outlined some requirements for a system. The system must be ready by 2019-2020 and can't use more than 20 MW of power, which is a small amount of power for a system that may have millions of processors.

The need for low power systems is prompting new approaches to development. The Barcelona Supercomputing Center in Spain, as part of Europe's exascale initiative, is working with UK-based ARM Holdings, the smartphone chip maker, on technology that combines its processors with Nvidia's graphics processors. They may use expected ARM co-processors as well.

Alex Ramirez, computer architecture research manager at the Barcelona center, said the project is demonstrating that you can build a high performance computing cluster based on ARM architecture. It is also building a complete software stack for the cluster.

"There are a big number of challenges ahead," said Ramirez, mostly getting the software to work in an environment that is different from servers or mobile computing. "The human effort and investment in software development is going to be significant," he added.

Europe has other exascale developments in progress, including one using Intel technology.

Ramirez said the Barcelona effort is now two-years-old, and the ultimate goal is to build a system that can reach exascale performance at reasonable power levels. But he also sees European-wide goals in this effort.

"There is an opportunity to keep embedded and high performance industry in Europe in the front line," said Ramirez. "There is a clear convergence between embedded technology and high performance computing technology."

4: If the U.S. doesn't lead in exascale, what happens when planning for zetascale begins?

A computer science freshman today should know in four years the pathway to an exascale system. By the time this same student completes his or her graduate work, there will be discussion about a zetascale system, something that's one thousand times more powerful.

1 2 3 Page 2
Page 2 of 3
7 inconvenient truths about the hybrid work trend
Shop Tech Products at Amazon